Semantics and Anomaly Preserving Sampling Strategy for Large-Scale Time Series Data

Author:

Ahmed Shibbir1ORCID,Islam Md Johirul2ORCID,Rajan Hridesh1ORCID

Affiliation:

1. Iowa State University, Ames, IA, USA

2. Amazon Inc, Austin, TX, USA

Abstract

We propose PASS , a O ( n ) algorithm for data reduction that is specifically aimed at preserving the semantics of time series data visualization in the form of line chart. Visualization of large trend line data is a challenge and current sampling approaches do produce reduction but result in loss of semantics and anomalous behavior. We have evaluated PASS using seven large and well-vetted datasets (Taxi, Temperature, DEBS challenge 2012-2014 dataset, New York Stock Exchange data, and Integrated Surface Data) and found that it has several benefits when compared to existing state-of-the-art time series data reduction techniques. First, it can preserve the semantics of the trend. Second, the visualization quality using the reduced data from PASS is very close to the original visualization. Third, the anomalous behavior is preserved and can be well observed from the visualizations created using the reduced data. We have conducted two user surveys collecting 3,000+ users’ responses for visual preference as well as perceptual effectiveness and found that the users prefer PASS over other techniques for different datasets. We also compare PASS using visualization metrics where it outperforms other techniques in five out of the seven datasets.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trust evaluation model for electric power mobile Internet environment based on graph and semantic time window;Second International Symposium on Computer Applications and Information Systems (ISCAIS 2023);2023-06-26

2. Visualizing Streaming of Ordinal Big Data;2022 International Conference on Graphics and Interaction (ICGI);2022-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3