Adaptive Local Linear Discriminant Analysis

Author:

Nie Feiping1,Wang Zheng1ORCID,Wang Rong1,Wang Zhen1,Li Xuelong1

Affiliation:

1. Northwestern Polytechnical University

Abstract

Dimensionality reduction plays a significant role in high-dimensional data processing, and Linear Discriminant Analysis (LDA) is a widely used supervised dimensionality reduction approach. However, a major drawback of LDA is that it is incapable of extracting the local structure information, which is crucial for handling multimodal data. In this article, we propose a novel supervised dimensionality reduction method named Adaptive Local Linear Discriminant Analysis (ALLDA), which adaptively learns a k -nearest neighbors graph from data themselves to extract the local connectivity of data. Furthermore, the original high-dimensional data usually contains noisy and redundant features, which has a negative impact on the evaluation of neighborships and degrades the subsequent classification performance. To address this issue, our method learns the similarity matrix and updates the subspace simultaneously so that the neighborships can be evaluated in the optimal subspaces where the noises have been removed. Through the optimal graph embedding, the underlying sub-manifolds of data in intra-class can be extracted precisely. Meanwhile, an efficient iterative optimization algorithm is proposed to solve the minimization problem. Promising experimental results on synthetic and real-world datasets are provided to evaluate the effectiveness of proposed method.

Funder

National Key Research and Development Program of China under Grant

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference53 articles.

1. Local Linear Discriminant Analysis Framework Using Sample Neighbors

2. The use of multiple measurements in taxonomic problems;Fisher Ronald A.;Annals of Human Genetics,1936

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3