ANATOMY

Author:

Gulur Nagendra1,Mehendale Mahesh1,Manikantan Raman2,Govindarajan Ramaswamy2

Affiliation:

1. Texas Instruments, Bangalore, India

2. Indian Institute of Science, Bangalore, India

Abstract

Memory system design is increasingly influencing modern multi-core architectures from both performance and power perspectives. However predicting the performance of memory systems is complex, compounded by the myriad design choices and parameters along multiple dimensions, namely (i) technology, (ii) design and (iii) architectural choices. In this work, we construct an analytical model of the memory system to comprehend this diverse space and to study the impact of memory system parameters from latency and bandwidth perspectives. Our model, called ANATOMY, consists of two key components that are coupled with each other, to model the memory system accurately. The first component is a queuing model of memory which models in detail various design choices and captures the impact of technological choices in memory systems. The second component is an analytical model to summarize key workload characteristics, namely row buffer hit rate (RBH), bank-level parallelism (BLP), and request spread (S) which are used as inputs to the queuing model to estimate memory performance. We validate the model across a wide variety of memory configurations on 4, 8 and 16 cores using a total of 44 workloads. ANATOMY is able to predict memory latency with an average error of 8.1%, 4.1% and 9.7% over 4, 8 and 16 core configurations. We demonstrate the extensibility and applicability of our model by exploring a variety of memory design choices such as the impact of clock speed, benefit of multiple memory controllers, the role of banks and channel width, and so on. We also demonstrate ANATOMY's ability to capture architectural elements such as scheduling mechanisms (using FR_FCFS and PAR_BS) and impact of DRAM refresh cycles. In all of these studies, ANATOMY provides insight into sources of memory performance bottlenecks and is able to quantitatively predict the benefit of redressing them.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference35 articles.

1. "DDR3 DDR4 " 2013. {Online}. Available: http://www.jedec.org/category/technology-focus-area/mainmemory-ddr3-ddr4-sdram "DDR3 DDR4 " 2013. {Online}. Available: http://www.jedec.org/category/technology-focus-area/mainmemory-ddr3-ddr4-sdram

2. Achieving predictable performance through better memory controller placement in many-core CMPs

3. Architecture---The design space of data-parallel memory systems

4. Handling the problems and opportunities posed by multiple on-chip memory controllers

5. The gem5 simulator

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3