Toward Energy-Efficient Computing

Author:

Brown David J.1,Reams Charles2

Affiliation:

1. Sun Microsystems

2. Cambridge University

Abstract

By now, most everyone is aware of the energy problem at its highest level: our primary sources of energy are running out, while the demand for energy in both commercial and domestic environments is increasing, and the side effects of energy use have important global environmental considerations. The emission of greenhouse gases such as CO, now seen by most climatologists to be linked to global warming, is only one issue.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference16 articles.

1. 80plus.org. Recent standards for power supply efficiency; http://www.80plus.org. 80plus.org. Recent standards for power supply efficiency; http://www.80plus.org.

2. The Case for Energy-Proportional Computing

3. Chu S. 2008. The energy problem and Lawrence Berkeley National Laboratory. Talk given to the California Air Resources Board (February). Chu S. 2008. The energy problem and Lawrence Berkeley National Laboratory. Talk given to the California Air Resources Board (February).

4. Environmental Protection Agency. 2007. EPA report to Congress on server and data center energy efficiency (August); http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf. Environmental Protection Agency. 2007. EPA report to Congress on server and data center energy efficiency (August); http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EnergIT;International Journal of Green Computing;2013-01

2. The emerging energy web;The European Physical Journal Special Topics;2012-11

3. A Green Private Cloud Architecture with global collaboration;Telecommunication Systems;2011-10-27

4. Memory-based scheduling of scientific computing clusters;The Journal of Supercomputing;2011-04-22

5. Applying Operations Management Principles on Optimisation of Scientific Computing Clusters;Rapid Modelling and Quick Response;2010-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3