Networking Wireless Energy in Embedded Networks

Author:

Chandio Yasra1,Bitsch Jó Ágila2,Syed Affan A.3,Alizai Muhammad Hamad1ORCID

Affiliation:

1. Department of Computer Science, LUMS, LUMS, DHA, Lahore, Punjab, Pakistan

2. RWTH Aachen University, Aachen, Germany

3. INNEXIV and FAST National University, Islamabad, Pakistan

Abstract

Wireless energy transfer has recently emerged as a promising alternative to realize the vision of perpetual embedded sensing. However, this technology transforms the notion of energy from merely a node’s local commodity to, similarly to data, a deployment-wide shareable resource. The challenges of managing a shareable energy resource are much more complicated and radically different from the research of the past decade: Besides energy-efficient operation of individual devices, we also need to optimize networkwide energy distribution. To counteract these challenges, we propose an energy stack , a layered software model for energy management in future transiently powered embedded networks. An initial specification of the energy stack, which is based on the historically successful layered approach for data networking, consists of three layers: (i) the transfer layer, which deals with the physical transfer of energy; (ii) the scheduling layer, which optimizes energy distribution over a single hop; and (iii) the network layer, creates a global view of the energy in the network for optimizing its networkwide distribution. As a contribution, we define the interfacing APIs between these layers, delineate their responsibilities, identify corresponding challenges, and provide a first implementation of the energy stack. Our evaluation, using both experimental deployments and high-level simulations, establishes the feasibility of a layered solution to energy management under transient power.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3