The theory of trackability with applications to sensor networks

Author:

Crespi Valentino1,Cybenko George2,Jiang Guofei3

Affiliation:

1. California State University at Los Angeles, Los Angeles, CA

2. Dartmouth College, Hanover, NH

3. NEC Laboratories America, Princeton, NJ

Abstract

In this article, we formalize the concept of tracking in a sensor network and develop a quantitative theory of trackability of weak models that investigates the rate of growth of the number of consistent tracks given a temporal sequence of observations made by the sensor network. The phenomenon being tracked is modelled by a nondeterministic finite automaton (a weak model) and the sensor network is modelled by an observer capable of detecting events related, typically ambiguously, to the states of the underlying automaton. Formally, an input string of symbols (the sensor network observations) that is presented to a nondeterministic finite automaton, M , (the weak model) determines a set of state sequences (the tracks or hypotheses) that are capable of generating the input string. We study the growth of the size of this candidate set of tracks as a function of the length of the input string. One key result is that for a given automaton and sensor coverage, the worst-case rate of growth is either polynomial or exponential in the number of observations, indicating a kind of phase transition in tracking accuracy. These results have applications to various tracking problems of recent interest involving tracking phenomena using noisy observations of hidden states such as: sensor networks, computer network security, autonomic computing and dynamic social network analysis.

Funder

Air Force Office of Scientific Research

National Institute of Justice

U.S. Department of Homeland Security

Defense Advanced Research Projects Agency

ARDA

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanofibers enabled advanced gas sensors: A review;Advanced Sensor and Energy Materials;2024-06

2. Computing the spectral gap of a family of matrices;Mathematics of Computation;2023-06-07

3. Game current-state opacity formulation in probabilistic resource automata;Information Sciences;2022-10

4. Analytic Properties of Trackable Weak Models;IEEE Transactions on Network Science and Engineering;2020-10-01

5. Observability Properties of Colored Graphs;IEEE Transactions on Network Science and Engineering;2020-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3