Reputation-based framework for high integrity sensor networks

Author:

Ganeriwal Saurabh1,Balzano Laura K.1,Srivastava Mani B.1

Affiliation:

1. University of California Los Angeles, Los Angeles, CA

Abstract

Sensor network technology promises a vast increase in automatic data collection capabilities through efficient deployment of tiny sensing devices. The technology will allow users to measure phenomena of interest at unprecedented spatial and temporal densities. However, as with almost every data-driven technology, the many benefits come with a significant challenge in data reliability. If wireless sensor networks are really going to provide data for the scientific community, citizen-driven activism, or organizations which test that companies are upholding environmental laws, then an important question arises: How can a user trust the accuracy of information provided by the sensor network? Data integrity is vulnerable to both node and system failures. In data collection systems, faults are indicators that sensor nodes are not providing useful information. In data fusion systems the consequences are more dire; the final outcome is easily affected by corrupted sensor measurements, and the problems are no longer visibly obvious.In this article, we investigate a generalized and unified approach for providing information about the data accuracy in sensor networks. Our approach is to allow the sensor nodes to develop a community of trust. We propose a framework where each sensor node maintains reputation metrics which both represent past behavior of other nodes and are used as an inherent aspect in predicting their future behavior. We employ a Bayesian formulation, specifically a beta reputation system, for the algorithm steps of reputation representation, updates, integration and trust evolution. This framework is available as a middleware service on motes and has been ported to two sensor network operating systems, TinyOS and SOS. We evaluate the efficacy of this framework using multiple contexts: (1) a lab-scale test bed of Mica2 motes, (2) Avrora simulations, and (3) real data sets collected from sensor network deployments in James Reserve.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference40 articles.

1. Balzano L. and Srivastava M. 2006. Fault in sensor networks. Tech. rep. NESL UCLA htttp://nesl.ee.ucla.edu. Balzano L. and Srivastava M. 2006. Fault in sensor networks. Tech. rep. NESL UCLA htttp://nesl.ee.ucla.edu.

2. Barnett V. and Lewis T. 1994. Outliers in Statistical Data. John Wiley. Barnett V. and Lewis T. 1994. Outliers in Statistical Data. John Wiley.

3. Blaze M. Feigenbaum J. Ioannidis J. and Keromytics A. 1999. The keynote trust management system. RFC 2704. Blaze M. Feigenbaum J. Ioannidis J. and Keromytics A. 1999. The keynote trust management system. RFC 2704.

4. LOF

Cited by 391 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3