Optimal sensor placement for agent localization

Author:

Jourdan Damien B.1,Roy Nicholas1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA

Abstract

In this article we consider deploying a sensor network to help an agent navigate in an area. In particular the agent uses range measurements to the sensors to localize itself. We wish to place the sensors in order to provide optimal localization accuracy to the agent. We begin by considering the problem of placing sensors in order to optimally localize the agent at a single location. The Position Error Bound (PEB), a lower bound on the localization accuracy, is used to measure the quality of sensor configurations. We then present RELOCATE, an iterative algorithm that places the sensors so as to minimize the PEB at that point. When the range measurements are unbiased and have constant variances, we introduce a coordinate transform that allows us to obtain a closed-form solution to minimizing the PEB along one coordinate. We also prove that RELOCATE converges to the global minimum, and we compute the approximate expected rate of convergence of the algorithm. We then apply RELOCATE to the more complex case where the variance of the range measurements depends on the sensors location and where those measurements can be biased. We finally apply RELOCATE to the case where the PEB must be minimized not at a single point, but at multiple locations, so that good localization accuracy is ensured as the agent moves through the area. We show that, compared to Simulated Annealing, the algorithm yields better results faster on these more realistic scenarios. We also show that by optimally placing the sensors, significant savings in terms of number of sensors used can be achieved. Finally we illustrate that the PEB is not only a convenient theoretical lower bound, but that it can actually be closely approximated by a maximum likelihood estimator.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3