A Method for Mining Granger Causality Relationship on Atmospheric Visibility

Author:

Liu Bo1,He Xi1,Song Mingdong1,Li Jiangqiang1,Qu Guangzhi2,Lang Jianlei1,Gu Rentao3

Affiliation:

1. Beijing University of Technology, Beijing, China

2. Oakland University, Rochester, MI

3. Beijing University of Posts and Telecommunications, Beijing, China

Abstract

Atmospheric visibility is an indicator of atmospheric transparency and its range directly reflects the quality of the atmospheric environment. With the acceleration of industrialization and urbanization, the natural environment has suffered some damages. In recent decades, the level of atmospheric visibility shows an overall downward trend. A decrease in atmospheric visibility will lead to a higher frequency of haze, which will seriously affect people's normal life, and also have a significant negative economic impact. The causal relationship mining of atmospheric visibility can reveal the potential relation between visibility and other influencing factors, which is very important in environmental management, air pollution control and haze control. However, causality mining based on statistical methods and traditional machine learning techniques usually achieve qualitative results that are hard to measure the degree of causality accurately. This article proposed the seq2seq-LSTM Granger causality analysis method for mining the causality relationship between atmospheric visibility and its influencing factors. In the experimental part, by comparing with methods such as linear regression, random forest, gradient boosting decision tree, light gradient boosting machine, and extreme gradient boosting, it turns out that the visibility prediction accuracy based on the seq2seq-LSTM model is about 10% higher than traditional machine learning methods. Therefore, the causal relationship mining based on this method can deeply reveal the implicit relationship between them and provide theoretical support for air pollution control.

Funder

Natural Science Foundation of China

Grant of China Scholarship Council

Beijing Natural Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference36 articles.

1. The impact of fog on Heyuan Expressway traffic;Zusheng Ma;Guangdong Meteorol,2006

2. A MethodforAnalyzingtheTrendinVisibility

3. The application of ridit analysis to detect trends in visibility

4. Regional variations in long-term visibility trends in the UK. 1962-1990;Lee D. O.;Geography,1994

5. Visibility trends in the UK 1950–1997

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3