Estimating Software Functional Size via Machine Learning

Author:

Lavazza Luigi1ORCID,Locoro Angela1ORCID,Liu Geng2ORCID,Meli Roberto3ORCID

Affiliation:

1. Università degli Studi dell’Insubria, Italy

2. Hangzhou Dianzi University, China

3. DPO, Italy

Abstract

Measuring software functional size via standard Function Points Analysis (FPA) requires the availability of fully specified requirements and specific competencies. Most of the time, the need to measure software functional size occurs well in advance with respect to these ideal conditions, under the lack of complete information or skilled experts. To work around the constraints of the official measurement process, several estimation methods for FPA have been proposed and are commonly used. Among these, the International Function Points User Group (IFPUG) has adopted the “High-level FPA” method (also known as the NESMA method). This method avoids weighting each data and transaction function by using fixed weights instead. Applying High-level FPA, or similar estimation methods, is faster and easier than carrying out the official measurement process but inevitably yields an approximation in the measures. In this article, we contribute to the problem of estimating software functional size measures by using machine learning. To the best of our knowledge, machine learning methods were never applied to the early estimation of software functional size. Our goal is to understand whether machine learning techniques yield estimates of FPA measures that are more accurate than those obtained with High-level FPA or similar methods. An empirical study on a large dataset of functional size predictors was carried out to train and test three of the most popular and robust machine learning methods, namely Random Forests, Support Vector Regression , and Neural Networks. A systematic experimental phase, with cycles of dataset filtering and splitting, parameter tuning, and model training and validation, is presented. The estimation accuracy of the obtained models was then evaluated and compared to that of fixed-weight models (e.g., High-level FPA) and linear regression models, also using a second dataset as the test set. We found that Support Vector Regression yields quite accurate estimation models. However, the obtained level of accuracy does not appear significantly better with respect to High-level FPA or to models built via ordinary least squares regression. Noticeably, fairly good accuracy levels were obtained by models that do not even require discerning among different types of transactions and data.

Funder

Università degli Studi dell’Insubria

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference54 articles.

1. A study on the statistical convertibility of IFPUG Function Point, COSMIC Function Point and Simple Function Point

2. Allan J. Albrecht. 1979. Measuring application development productivity. In Proceedings of the Joint SHARE/GUIDE/ IBM Application Development Symposium, Vol. 10. 83–92.

3. Software effort prediction

4. Software effort estimation using radial basis function neural networks;Bautista Ana Maria;Information Theories & Applications,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3