Competitive Online Optimization with Multiple Inventories

Author:

Lin Qiulin1,Mo Yanfang1,Su Junyan1,Chen Minghua1

Affiliation:

1. City University of Hong Kong, Hong Kong, China

Abstract

We study an online inventory trading problem where a user seeks to maximize the aggregate revenue of trading multiple inventories over a time horizon. The trading constraints and concave revenue functions are revealed sequentially in time, and the user needs to make irrevocable decisions. The problem has wide applications in various engineering domains. Existing works employ the primal-dual framework to design online algorithms with sub-optimal, albeit near-optimal, competitive ratios (CR). We exploit the problem structure to develop a new divide-and-conquer approach to solve the online multi-inventory problem by solving multiple calibrated single-inventory ones separately and combining their solutions. The approach achieves the optimal CR of łn θ + 1 if Nłeq łn θ + 1, where N is the number of inventories and θ represents the revenue function uncertainty; it attains a CR of 1/[1-e^-1/(łnθ+1) ] in [łn θ +1, łn θ +2) otherwise. The divide-and-conquer approach reveals novel structural insights for the problem, (partially) closes a gap in existing studies, and generalizes to broader settings. For example, it gives an algorithm with a CR within a constant factor to the lower bound for a generalized one-way trading problem with price elasticity with no previous results. When developing the above results, we also extend a recent CR-Pursuit algorithmic framework and introduce an online allocation problem with allowance augmentation, both of which can be of independent interest.

Funder

InnoHK Initiative

Laboratory for AI-Powered Financial Technologies

Hong Kong Research Grants Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time self-scheduling of Jintan AA-CAES plant in energy and reactive power markets;Journal of Energy Storage;2024-06

2. Competitive Online Age-of-Information Optimization for Energy Harvesting Systems;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

3. Online Allocation with Replenishable Budgets: Worst Case and Beyond;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2024-02-16

4. Real-Time Omnichannel Fulfillment Optimization;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3