Perfect Phylogenies via Branchings in Acyclic Digraphs and a Generalization of Dilworth’s Theorem

Author:

Hujdurović Ademir1,Husić Edin2,Milanić Martin1,Rizzi Romeo3,Tomescu Alexandru I.4

Affiliation:

1. University of Primorska, Koper, Slovenia

2. London School of Economics and University of Primorska, Koper, Slovenia

3. University of Verona, Verona, Italy

4. Helsinki Institute for Information Technology HIIT and University of Helsinki, Finland

Abstract

Motivated by applications in cancer genomics and following the work of Hajirasouliha and Raphael (WABI 2014), Hujdurović et al. (IEEE TCBB, 2018) introduced the minimum conflict-free row split (MCRS) problem: split each row of a given binary matrix into a bitwise OR of a set of rows so that the resulting matrix corresponds to a perfect phylogeny and has the minimum possible number of rows among all matrices with this property. Hajirasouliha and Raphael also proposed the study of a similar problem, in which the task is to minimize the number of distinct rows of the resulting matrix. Hujdurović et al. proved that both problems are NP-hard, gave a related characterization of transitively orientable graphs, and proposed a polynomial-time heuristic algorithm for the MCRS problem based on coloring cocomparability graphs. We give new, more transparent formulations of the two problems, showing that the problems are equivalent to two optimization problems on branchings in a derived directed acyclic graph. Building on these formulations, we obtain new results on the two problems, including (1) a strengthening of the heuristic by Hujdurović et al. via a new min-max result in digraphs generalizing Dilworth’s theorem, which may be of independent interest; (2) APX-hardness results for both problems; (3) approximation algorithms; and (4) exponential-time algorithms solving the two problems to optimality faster than the naïve brute-force approach. Our work relates to several well-studied notions in combinatorial optimization: chain partitions in partially ordered sets, laminar hypergraphs, and (classical and weighted) colorings of graphs.

Funder

Academy of Finland

Slovenian Research Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3