Spotting Flares: The Vital Signs of the Viral Spread of Tweets Made During Communal Incidents

Author:

Upadhyaya Apoorva1ORCID,Chandra Joydeep1ORCID

Affiliation:

1. Indian Institute of Technology Patna, Bihta, Patna, India

Abstract

With the increasing use of Twitter for encouraging users to instigate violent behavior with hate and racial content, it becomes necessary to investigate the uniqueness in the dynamics of the spread of tweets made during violent communal incidents and the challenges they pose in early identification of potential viral content. In this article, we study the spread of the tweets made during several violent communal incidents along four major dimensions — the underlying follower network of the users, their structural and engagement characteristics, the cascades, and the cognitive aspects of the content, each of which plays a vital role in the spread of content. Using large public and collected data, we compare these features with tweets related to other subjects from several major domains, such as non-violent political events, celebrities, and technology, that contribute to a large fraction of the viral content over Twitter. We discover that while the spread of cascades and the users involved may provide strong early evidence of the viral content for several domains, the early phases of the spread of viral tweets related to violent communal incidents are characterized by cascades with protracted growth involving fringe or low-importance users, which would possibly make early prediction difficult. Our findings indicate that an interplay of certain network and cascade properties, together with the cognitive characteristics of tweets and the behavioral patterns of the engaging users, may provide stronger early indicators of the virality of this content.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference67 articles.

1. Big five personality traits: The OCEAN model explained;Ackerman C.;Positive Psychology.,2020

2. Human behaviour in different social medias

3. Deep Learning for Hate Speech Detection in Tweets

4. Everyone's an influencer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3