Deep Q Network–Driven Task Offloading for Efficient Multimedia Data Analysis in Edge Computing–Assisted IoV

Author:

Yang Chenyi1ORCID,Xu Xiaolong2ORCID,Zhou Xiaokang3ORCID,Qi Lianyong4ORCID

Affiliation:

1. School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China

2. School of Computer and Software, Nanjing University of Information Science and Technology, China, Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, China, State Key Laboratory Novel Software Technology, Nanjing University, Nanjing, China

3. Faculty of Data Science, Shiga University, Japan, RIKEN Center for Advanced Intelligence Project, Japan

4. School of Computer Science, Qufu Normal University, China

Abstract

With the prosperity of Industry 4.0, numerous emerging industries continue to gain popularity and their market scales are expanding ceaselessly. The Internet of Vehicles (IoV), one of the thriving intelligent industries, enjoys bright development prospects. However, at the same time, the reliability and availability of IoV applications are confronted with two major bottlenecks of time delay and energy consumption. To make matters worse, massive heterogeneous and multi-dimensional multimedia data generated on the IoV present a huge obstacle to effective data analysis. Fortunately, the advent of edge computing technology enables tasks to be offloaded to edge servers, which significantly reduces total overhead of IoV systems. Deep reinforcement learning (DRL), equipped with its excellent perception and decision-making capability, is undoubtedly a dominant technology to solve task offloading problems. In this article, we first employ an optimized Fuzzy C-means algorithm to cluster vehicles and other edge devices according to their respective service quality requirements. Then, we employ an election algorithm to assist in maintaining the stability of the IoV. Last, we propose a task-offloading algorithm based on the Deep Q Network (DQN) to acquire an optimal task offloading scheme. Massive simulation experiments demonstrate the superiority of our method in minimizing time delay and energy consumption.

Funder

Natural Science Foundation of Jiangsu Province of China

Financial and Science Technology Plan Project of Xinjiang Production and Construction Corps

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3