1. Toward Fairness in Face Matching Algorithms
2. Social Media and Fake News in the 2016 Election
3. [ 3 ] Abdulaziz A Almuzaini , Chidansh A Bhatt , David M Pennock , and Vivek K Singh . 2022 . ABCinML: Anticipatory Bias Correction in Machine Learning Applications. In 2022 ACM Conference on Fairness, Accountability, and Transparency. 1552–1560 . [3] Abdulaziz A Almuzaini, Chidansh A Bhatt, David M Pennock, and Vivek K Singh. 2022. ABCinML: Anticipatory Bias Correction in Machine Learning Applications. In 2022 ACM Conference on Fairness, Accountability, and Transparency. 1552–1560.
4. [ 4 ] Fatemeh Torabi Asr and Maite Taboada . 2018 . The data challenge in misinformation detection: Source reputation vs. content veracity . In Proceedings of the first workshop on fact extraction and verification (FEVER). 10–15 . [4] Fatemeh Torabi Asr and Maite Taboada. 2018. The data challenge in misinformation detection: Source reputation vs. content veracity. In Proceedings of the first workshop on fact extraction and verification (FEVER). 10–15.
5. [ 5 ] Rachel KE Bellamy , Kuntal Dey , Michael Hind , Samuel C Hoffman , Stephanie Houde , Kalapriya Kannan , Pranay Lohia , Jacquelyn Martino , Sameep Mehta , Aleksandra Mojsilovic , 2018. AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943 ( 2018 ). [5] Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, 2018. AI Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943 (2018).