You Cannot Improve What You Do not Measure

Author:

Boutros Andrew1ORCID,Yazdanshenas Sadegh2ORCID,Betz Vaughn1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Toronto, ON, Canada

2. Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada

Abstract

Recently, deep learning (DL) has become best-in-class for numerous applications but at a high computational cost that necessitates high-performance energy-efficient acceleration. The reconfigurability of FPGAs is appealing due to the rapid change in DL models but also causes lower performance and area-efficiency compared to ASICs. In this article, we implement three state-of-the-art computing architectures (CAs) for convolutional neural network (CNN) inference on FPGAs and ASICs. By comparing the FPGA and ASIC implementations, we highlight the area and performance costs of programmability to pinpoint the inefficiencies in current FPGA architectures. We perform our experiments using three variations of these CAs for AlexNet, VGG-16 and ResNet-50 to allow extensive comparisons. We find that the performance gap varies significantly from 2.8× to 6.3×, while the area gap is consistent across CAs with an 8.7 average FPGA-to-ASIC area ratio. Among different blocks of the CAs, the convolution engine, constituting up to 60% of the total area, has a high area ratio ranging from 13 to 31. Motivated by our FPGA vs. ASIC comparisons, we suggest FPGA architectural changes such as increasing DSP block count, enhancing low-precision support in DSP blocks and rethinking the on-chip memories to reduce the programmability gap for DL applications.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference57 articles.

1. An OpenCL™ Deep Learning Accelerator on Arria 10

2. DaDianNao: A Machine-Learning Supercomputer

3. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks;Chen Y.;Proceedings of the JSSC,2017

4. S. Chetlur etal 2014. CuDNN: Efficient primitives for deep learning. arXiv:1410.0759. S. Chetlur et al. 2014. CuDNN: Efficient primitives for deep learning. arXiv:1410.0759.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3