Affiliation:
1. Ghent University - imec, ELIS - IDLab, Pietersnieuwstraat, Ghent
2. Ghent University - imec - MICT, Korte Meer, Ghent
Abstract
Spott is an innovative second screen mobile multimedia application which offers viewers relevant information on objects (e.g., clothing, furniture, food) they see and like on their television screens. The application enables interaction between TV audiences and brands, so producers and advertisers can offer potential consumers tailored promotions, e-shop items, and/or free samples. In line with the current views on innovation management, the technological excellence of the Spott application is coupled with iterative user involvement throughout the entire development process. This article discusses both of these aspects and how they impact each other. First, we focus on the technological building blocks that facilitate the (semi-) automatic interactive tagging process of objects in the video streams. The majority of these building blocks extensively make use of novel and state-of-the-art deep learning concepts and methodologies. We show how these deep learning based video analysis techniques facilitate video summarization, semantic keyframe clustering, and (similar) object retrieval. Secondly, we provide insights in user tests that have been performed to evaluate and optimize the application’s user experience. The lessons learned from these open field tests have already been an essential input in the technology development and will further shape the future modifications to the Spott application.
Funder
Ghent University, iMinds, the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) and Appiness bvba
IWT/VLAIO O8O Spotshop project
The project’s related e-commerce service - under the name “Spott”
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献