1. Yehuda Afek Shaked Rafaeli and Moshe Sulamy. 2017. Cheating by duplication: Equilibrium requires global knowledge. (2017). arXiv:1711.04728 Yehuda Afek Shaked Rafaeli and Moshe Sulamy. 2017. Cheating by duplication: Equilibrium requires global knowledge. (2017). arXiv:1711.04728
2. Eugene Bagdasaryan , Andreas Veit , Yiqing Hua , Deborah Estrin , and Vitaly Shmatikov . 2020 . How To Backdoor Federated Learning. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26--28 August 2020, Online [Palermo, Sicily, Italy] (Proceedings of Machine Learning Research), Silvia Chiappa and Roberto Calandra (Eds.) , Vol. 108 . PMLR, 2938--2948. http://proceedings.mlr.press/v108/bagdasaryan20a.html Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. 2020. How To Backdoor Federated Learning. In The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26--28 August 2020, Online [Palermo, Sicily, Italy] (Proceedings of Machine Learning Research), Silvia Chiappa and Roberto Calandra (Eds.), Vol. 108. PMLR, 2938--2948. http://proceedings.mlr.press/v108/bagdasaryan20a.html
3. Scaling to very very large corpora for natural language disambiguation
4. Omer Ben-Porat and Moshe Tennenholtz . 2019 . Regression Equilibrium. In Proceedings of the 2019 ACM Conference on Economics and Computation (EC '19) . Association for Computing Machinery, New York, NY, USA, 173--191. https://doi.org/10.1145/3328526.3329560 Omer Ben-Porat and Moshe Tennenholtz. 2019. Regression Equilibrium. In Proceedings of the 2019 ACM Conference on Economics and Computation (EC '19). Association for Computing Machinery, New York, NY, USA, 173--191. https://doi.org/10.1145/3328526.3329560
5. Avrim Blum , Nika Haghtalab , Richard Lanas Phillips , and Han Shao . 2021 . One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning . In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18--24 July 2021, Virtual Event (Proceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.) , Vol. 139 . PMLR, 1005--1014. http://proceedings.mlr.press/v139/blum21a.html Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, and Han Shao. 2021. One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18--24 July 2021, Virtual Event (Proceedings of Machine Learning Research), Marina Meila and Tong Zhang (Eds.), Vol. 139. PMLR, 1005--1014. http://proceedings.mlr.press/v139/blum21a.html