PλωNK: functional probabilistic NetKAT

Author:

Vandenbroucke Alexander1,Schrijvers Tom1

Affiliation:

1. KU Leuven, Belgium

Abstract

This work presents PλωNK, a functional probabilistic network programming language that extends Probabilistic NetKAT (PNK). Like PNK, it enables probabilistic modelling of network behaviour, by providing probabilistic choice and infinite iteration (to simulate looping network packets). Yet, unlike PNK, it also offers abstraction and higher-order functions to make programming much more convenient. The formalisation of PλωNK is challenging for two reasons: Firstly, network programming induces multiple side effects (in particular, parallelism and probabilistic choice) which need to be carefully controlled in a functional setting. Our system uses an explicit syntax for thunks and sequencing which makes the interplay of these effects explicit. Secondly, measure theory, the standard domain for formalisations of (continuous) probablistic languages, does not admit higher-order functions. We address this by leveraging ω-Quasi Borel Spaces (ωQBSes), a recent advancement in the domain theory of probabilistic programming languages. We believe that our work is not only useful for bringing abstraction to PNK, but that—as part of our contribution—we have developed the meta-theory for a probabilistic language that combines advanced features like higher-order functions, iteration and parallelism, which may inform similar meta-theoretic efforts.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference41 articles.

1. Bram Aerts, Toon Goedemé, and Joost Vennekens. 2016. A Probabilistic Logic Programming Approach to Automatic Video Montage. In Proceedings of the Twenty-second European Conference on Artificial Intelligence (ECAI’16). IOS Press, Amsterdam, The Netherlands, The Netherlands, 234–242.

2. Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetkAT: semantic foundations for networks. In POPL. ACM, 113–126.

3. Robert J Aumann et al. 1961. Borel structures for function spaces. Illinois Journal of Mathematics 5, 4 (1961), 614–630.

4. Giorgio Bacci, Robert Furber, Dexter Kozen, Radu Mardare, Prakash Panangaden, and Dana Scott. 2018. Boolean-Valued Semantics for the Stochastic 𝜆-Calculus. In LICS. ACM, 669–678.

5. Ingo Battenfeld, Matthias Schröder, and Alex Simpson. 2007. A Convenient Category of Domains. Electr. Notes Theor. Comput. Sci. 172 (2007), 69–99.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DyNetKAT: An Algebra of Dynamic Networks;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3