The KaffeOS Java runtime system

Author:

Back Godmar1,Hsieh Wilson C.2

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

2. Google, Inc., Mountain View, CA

Abstract

Single-language runtime systems, in the form of Java virtual machines, are widely deployed platforms for executing untrusted mobile code. These runtimes provide some of the features that operating systems provide: interapplication memory protection and basic system services. They do not, however, provide the ability to isolate applications from each other. Neither do they provide the ability to limit the resource consumption of applications. Consequently, the performance of current systems degrades severely in the presence of malicious or buggy code that exhibits ill-behaved resource usage. We show that Java runtime systems can be extended to support processes , and that processes can provide robust and efficient support for untrusted applications.We have designed and built KaffeOS, a Java runtime system that provides support for processes. KaffeOS isolates processes and manages the physical resources available to them: CPU and memory. Unlike existing Java virtual machines, KaffeOS can safely terminate processes without adversely affecting the integrity of the system, and it can fully reclaim a terminated process's resources. Finally, KaffeOS requires no changes to the Java language. The novel aspects of the KaffeOS architecture include the application of a user/kernel boundary as a structuring principle for runtime systems, the employment of garbage collection techniques for resource management and isolation, and a model for direct sharing of objects between untrusted applications. The difficulty in designing KaffeOS lay in balancing the goals of isolation and resource management against the goal of allowing direct sharing of objects.For the SpecJVM benchmarks, the overhead that our KaffeOS prototype incurs ranges from 0% to 25%, when compared to the open-source JVM on which it is based. We consider this overhead acceptable for the safety that KaffeOS provides. In addition, our KaffeOS prototype can scale to run more applications than running multiple JVMs. Finally, in the presence of malicious or buggy code that engages in a denial-of-service attack, KaffeOS can contain the attack, remove resources from the attacked applications, and continue to provide robust service to other clients.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference71 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sfitag: Efficient Software Fault Isolation with Memory Tagging for ARM Kernel Extensions;Proceedings of the ACM Asia Conference on Computer and Communications Security;2023-07-10

2. Evolving Operating System Kernels Towards Secure Kernel-Driver Interfaces;Proceedings of the 19th Workshop on Hot Topics in Operating Systems;2023-06-22

3. Refactoring the FreeBSD Kernel with Checked C;2020 IEEE Secure Development (SecDev);2020-09

4. Securing Asynchronous Exceptions;2020 IEEE 33rd Computer Security Foundations Symposium (CSF);2020-06

5. DeMETER in clouds: detection of malicious external thread execution in runtime with machine learning in PaaS clouds;Cluster Computing;2019-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3