Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries

Author:

Carmeli Nofar1ORCID,Tziavelis Nikolaos2ORCID,Gatterbauer Wolfgang2ORCID,Kimelfeld Benny3ORCID,Riedewald Mirek2ORCID

Affiliation:

1. Technion, Israel and DI ENS, ENS, CNRS, PSL University, Inria, France

2. Northeastern University, Boston, MA, USA

3. Technion - Israel Institute of Technology, Haifa, Israel

Abstract

We study the question of when we can provide direct access to the k-th answer to a Conjunctive Query (CQ) according to a specified order over the answers in time logarithmic in the size of the database, following a preprocessing step that constructs a data structure in time quasilinear in database size. Specifically, we embark on the challenge of identifying the tractable answer orderings , that is, those orders that allow for such complexity guarantees. To better understand the computational challenge at hand, we also investigate the more modest task of providing access to only a single answer (i.e., finding the answer at a given position), a task that we refer to as the selection problem , and ask when it can be performed in quasilinear time. We also explore the question of when selection is indeed easier than ranked direct access. We begin with lexicographic orders . For each of the two problems, we give a decidable characterization (under conventional complexity assumptions) of the class of tractable lexicographic orders for every CQ without self-joins. We then continue to the more general orders by the sum of attribute weights and establish the corresponding decidable characterizations, for each of the two problems, of the tractable CQs without self-joins. Finally, we explore the question of when the satisfaction of Functional Dependencies (FDs) can be utilized for tractability and establish the corresponding generalizations of our characterizations for every set of unary FDs.

Funder

Google PhD Fellowships

German Research Foundation (DFG) Project

National Science Foundation

French government under management of Agence Nationale de la Recherche as part of the “Investissements d’avenir” program

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardinality estimation of activity trajectory similarity queries using deep learning;Information Sciences;2023-10

2. Efficient Computation of Quantiles over Joins;Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems;2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3