Machine Learning Based Assembly of Fragments of Ancient Papyrus

Author:

Abitbol Roy1ORCID,Shimshoni Ilan1,Ben-Dov Jonathan2

Affiliation:

1. Department of Information Systems, University of Haifa, Israel

2. Department of Biblical Studies, Tel Aviv University, Israel

Abstract

The task of assembling fragments in a puzzle-like manner into a composite picture plays a significant role in the field of archaeology as it supports researchers in their attempt to reconstruct historic artifacts. In this article, we propose a method for matching and assembling pairs of ancient papyrus fragments containing mostly unknown scriptures. Papyrus paper is manufactured from papyrus plants and therefore portrays typical thread patterns resulting from the plant’s stems. The proposed algorithm is founded on the hypothesis that these thread patterns contain unique local attributes such that nearby fragments show similar patterns reflecting the continuations of the threads. We posit that these patterns can be exploited using image processing and machine learning techniques to identify matching fragments. The algorithm and system which we present support the quick and automated classification of matching pairs of papyrus fragments as well as the geometric alignment of the pairs against each other. The algorithm consists of a series of steps and is based on deep-learning and machine learning methods. The first step is to deconstruct the problem of matching fragments into a smaller problem of finding thread continuation matches in local edge areas (squares) between pairs of fragments. This phase is solved using a convolutional neural network ingesting raw images of the edge areas and producing local matching scores. The result of this stage yields very high recall but low precision. Thus, we utilize these scores in order to conclude about the matching of entire fragments pairs by establishing an elaborate voting mechanism. We enhance this voting with geometric alignment techniques from which we extract additional spatial information. Eventually, we feed all the data collected from these steps into a Random Forest classifier in order to produce a higher order classifier capable of predicting whether a pair of fragments is a match. Our algorithm was trained on a batch of fragments which was excavated from the Dead Sea caves and is dated circa the 1st century BCE. The algorithm shows excellent results on a validation set which is of a similar origin and conditions. We then tried to run the algorithm against a real-life set of fragments for which we have no prior knowledge or labeling of matches. This test batch is considered extremely challenging due to its poor condition and the small size of its fragments. Evidently, numerous researchers have tried seeking matches within this batch with very little success. Our algorithm performance on this batch was sub-optimal, returning a relatively large ratio of false positives. However, the algorithm was quite useful by eliminating 98% of the possible matches thus reducing the amount of work needed for manual inspection. Indeed, experts that reviewed the results have identified some positive matches as potentially true and referred them for further investigation.

Funder

Deutsche-Israelische Projektkooperation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Information Systems,Conservation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational techniques for virtual reconstruction of fragmented archaeological textiles;Heritage Science;2023-12-13

2. Machine Learning for Ancient Languages: A Survey;Computational Linguistics;2023

3. Assembling Fragments of Ancient Papyrus via Artificial Intelligence;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

4. A hybrid 3D object auto-completion approach with self-supervised data augmentation for fragments of archaeological objects;Journal of Cultural Heritage;2022-07

5. A Comparative Study on Reassembly of Image Fragments;Algorithms for Intelligent Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3