Coarse grain parallelization of deep neural networks

Author:

Tallada Marc Gonzalez1

Affiliation:

1. Universitat Politecnica de Catalunya-BarcelonaTech

Abstract

Deep neural networks (DNN) have recently achieved extraordinary results in domains like computer vision and speech recognition. An essential element for this success has been the introduction of high performance computing (HPC) techniques in the critical step of training the neural network. This paper describes the implementation and analysis of a network-agnostic and convergence-invariant coarse-grain parallelization of the DNN training algorithm. The coarse-grain parallelization is achieved through the exploitation of the batch-level parallelism. This strategy is independent from the support of specialized and optimized libraries. Therefore, the optimization is immediately available for accelerating the DNN training. The proposal is compatible with multi-GPU execution without altering the algorithm convergence rate. The parallelization has been implemented in Caffe, a state-of-the-art DNN framework. The paper describes the code transformations for the parallelization and we also identify the limiting performance factors of the approach. We show competitive performance results for two state-of-the-art computer vision datasets, MNIST and CIFAR-10. In particular, on a 16-core Xeon E5-2667v2 at 3.30GHz we observe speedups of 8× over the sequential execution, at similar performance levels of those obtained by the GPU optimized Caffe version in a NVIDIA K40 GPU.

Funder

Ministry of Science and Innovation of Spain

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimalization of Parallel GNG by Neurons Assigned to Processes;Computer Information Systems and Industrial Management;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3