Drinking from both glasses

Author:

Cao Man1,Zhang Minjia1,Sengupta Aritra1,Bond Michael D.1

Affiliation:

1. Ohio State University

Abstract

It is notoriously challenging to develop parallel software systems that are both scalable and correct. Runtime support for parallelism---such as multithreaded record & replay, data race detectors, transactional memory, and enforcement of stronger memory models---helps achieve these goals, but existing commodity solutions slow programs substantially in order to track (i.e., detect or control) an execution's cross-thread dependences accurately. Prior work tracks cross-thread dependences either "pessimistically," slowing every program access, or "optimistically," allowing for lightweight instrumentation of most accesses but dramatically slowing accesses involved in cross-thread dependences. This paper seeks to hybridize pessimistic and optimistic tracking, which is challenging because there exists a fundamental mismatch between pessimistic and optimistic tracking. We address this challenge based on insights about how dependence tracking and program synchronization interact, and introduce a novel approach called hybrid tracking . Hybrid tracking is suitable for building efficient runtime support, which we demonstrate by building hybrid-tracking-based versions of a dependence recorder and a region serializability enforcer. An adaptive, profile-based policy makes runtime decisions about switching between pessimistic and optimistic tracking. Our evaluation shows that hybrid tracking enables runtime support to overcome the performance limitations of both pessimistic and optimistic tracking alone.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3