Multi-core on-the-fly SCC decomposition

Author:

Bloemen Vincent1,Laarman Alfons2,van de Pol Jaco1

Affiliation:

1. University of Twente

2. Vienna University of Technology

Abstract

The main advantages of Tarjan's strongly connected component (SCC) algorithm are its linear time complexity and ability to return SCCs on-the-fly, while traversing or even generating the graph. Until now, most parallel SCC algorithms sacrifice both: they run in quadratic worst-case time and/or require the full graph in advance. The current paper presents a novel parallel, on-the-fly SCC algorithm. It preserves the linear-time property by letting workers explore the graph randomly while carefully communicating partially completed SCCs. We prove that this strategy is correct. For efficiently communicating partial SCCs, we develop a concurrent, iterable disjoint set structure (combining the union-find data structure with a cyclic list). We demonstrate scalability on a 64-core machine using 75 real-world graphs (from model checking and explicit data graphs), synthetic graphs (combinations of trees, cycles and linear graphs), and random graphs. Previous work did not show speedups for graphs containing a large SCC. We observe that our parallel algorithm is typically 10-30× faster compared to Tarjan's algorithm for graphs containing a large SCC. Comparable performance (with respect to the current state-of-the-art) is obtained for graphs containing many small SCCs.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference54 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel path detection for fraudulent accounts in banks based on graph analysis;PeerJ Computer Science;2023-12-14

2. Efficient parallel graph trimming by arc-consistency;The Journal of Supercomputing;2022-04-16

3. Improving swarming using genetic algorithms;Innovations in Systems and Software Engineering;2020-06

4. Finding strongly connected components of simple digraphs based on granulation strategy;International Journal of Approximate Reasoning;2020-03

5. Model checking with generalized Rabin and Fin-less automata;International Journal on Software Tools for Technology Transfer;2019-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3