Affiliation:
1. Nanyang Technological University, Singapore
2. PQShield, UK
Abstract
Public-key cryptography is an indispensable component used in almost all of our present-day digital infrastructure. However, most if not all of it is predominantly built upon hardness guarantees of number theoretic problems that can be broken by large-scale quantum computers in the future. Sensing the imminent threat from continued advances in quantum computing, NIST has recently initiated a global-level standardization process for quantum resistant public-key cryptographic primitives such as public-key encryption, digital signatures, and key encapsulation mechanisms. While the process received proposals from various categories of post-quantum cryptography, lattice-based cryptography features most prominently among all the submissions. Lattice-based cryptography offers a very attractive alternative to traditional public-key cryptography mainly due to the variety of lattice-based schemes offering varying flavors of security and efficiency guarantees. In this article, we survey the evolution of lattice-based key-sharing schemes (public-key encryption and key encapsulation schemes) and cover various aspects ranging from theoretical security guarantees, general algorithmic frameworks, practical implementation aspects, and physical attack security, with special focus on lattice-based key-sharing schemes competing in the NIST’s standardization process.
Publisher
Association for Computing Machinery (ACM)
Subject
General Computer Science,Theoretical Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献