OptiQL: Robust Optimistic Locking for Memory-Optimized Indexes

Author:

Shi Ge1ORCID,Yan Ziyi1ORCID,Wang Tianzheng1ORCID

Affiliation:

1. Simon Fraser University, Burnaby, Canada

Abstract

Modern memory-optimized indexes often use optimistic locks for concurrent accesses. Read operations can proceed optimistically without taking the lock, greatly improving performance on multicore CPUs. But this is at the cost of robustness against contention where many threads contend on a small set of locks, causing excessive cacheline invalidation, interconnect traffic and eventually performance collapse. Yet existing solutions often sacrifice desired properties such as compact 8-byte lock size and fairness among lock requesters. This paper presents optimistic queuing lock (OptiQL), a new optimistic lock for database indexing to solve this problem. OptiQL extends the classic MCS lock---a fair, compact and robust mutual exclusion lock---with optimistic read capabilities for index workloads to achieve both robustness and high performance while maintaining various desirable properties. Evaluation using memory-optimized B+-trees on a 40-core, dual-socket server shows that OptiQL matches existing optimistic locks for read operations, while avoiding performance collapse under high contention.

Publisher

Association for Computing Machinery (ACM)

Reference47 articles.

1. Adnan Alhomssi and Viktor Leis . 2021 . Contention and Space Management in B-Trees. In Conference on Innovative Data Systems Research (CIDR 2021). Adnan Alhomssi and Viktor Leis. 2021. Contention and Space Management in B-Trees. In Conference on Innovative Data Systems Research (CIDR 2021).

2. The performance of spin lock alternatives for shared-money multiprocessors

3. BzTree: A High-Performance Latch-free Range Index for Non-Volatile Memory;Arulraj Joy;PVLDB,2018

4. Concurrency of operations on B-trees

5. HOT

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightweight Latches for B-Trees to Cope with High Contention;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3