n-Gage

Author:

Gao Nan1,Shao Wei1,Rahaman Mohammad Saiedur1,Salim Flora D.1

Affiliation:

1. RMIT University, Melbourne, Australia

Abstract

The study of student engagement has attracted growing interests to address problems such as low academic performance, disaffection, and high dropout rates. Existing approaches to measuring student engagement typically rely on survey-based instruments. While effective, those approaches are time-consuming and labour-intensive. Meanwhile, both the response rate and quality of the survey are usually poor. As an alternative, in this paper, we investigate whether we can infer and predict engagement at multiple dimensions, just using sensors. We hypothesize that multidimensional student engagement level can be translated into physiological responses and activity changes during the class, and also be affected by the environmental changes. Therefore, we aim to explore the following questions: Can we measure the multiple dimensions of high school student's learning engagement including emotional, behavioural and cognitive engagement with sensing data in the wild? Can we derive the activity, physiological, and environmental factors contributing to the different dimensions of student learning engagement? If yes, which sensors are the most useful in differentiating each dimension of the engagement? Then, we conduct an in-situ study in a high school from 23 students and 6 teachers in 144 classes over 11 courses for 4 weeks. We present the n-Gage, a student engagement sensing system using a combination of sensors from wearables and environments to automatically detect student in-class multidimensional learning engagement. Extensive experiment results show that n-Gage can accurately predict multidimensional student engagement in real-world scenarios with an average mean absolute error (MAE) of 0.788 and root mean square error (RMSE) of 0.975 using all the sensors. We also show a set of interesting findings of how different factors (e.g., combinations of sensors, school subjects, CO2 level) affect each dimension of the student learning engagement.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference96 articles.

1. EduSense: Practical classroom sensing at Scale;Dohyun Kim Karan Ahuja;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,2019

2. Psychophysiology

3. Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The End is the Beginning is the End: The closed-loop learning analytics framework;Computers in Human Behavior;2024-09

2. Edulyze: Learning Analytics for Real-World Classrooms at Scale;Journal of Learning Analytics;2024-08-04

3. ClassID: Enabling Student Behavior Attribution from Ambient Classroom Sensing Systems;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2024-05-13

4. A magnetometer-based method for in-situ syncing of wearable inertial measurement units;Frontiers in Computer Science;2024-04-19

5. Effecti-Net: A Multimodal Framework and Database for Educational Content Effectiveness Analysis;Proceedings of the 14th Learning Analytics and Knowledge Conference;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3