Achieving scalable model-based testing through test case diversity

Author:

Hemmati Hadi1,Arcuri Andrea2,Briand Lionel1

Affiliation:

1. Simula Research Laboratory, Norway and University of Oslo, Norway

2. Simula Research Laboratory, Norway

Abstract

The increase in size and complexity of modern software systems requires scalable, systematic, and automated testing approaches. Model-based testing (MBT), as a systematic and automated test case generation technique, is being successfully applied to verify industrial-scale systems and is supported by commercial tools. However, scalability is still an open issue for large systems, as in practice there are limits to the amount of testing that can be performed in industrial contexts. Even with standard coverage criteria, the resulting test suites generated by MBT techniques can be very large and expensive to execute, especially for system level testing on real deployment platforms and network facilities. Therefore, a scalable MBT technique should be flexible regarding the size of the generated test suites and should be easily accommodated to fit resource and time constraints. Our approach is to select a subset of the generated test suite in such a way that it can be realistically executed and analyzed within the time and resource constraints, while preserving the fault revealing power of the original test suite to a maximum extent. In this article, to address this problem, we introduce a family of similarity-based test case selection techniques for test suites generated from state machines. We evaluate 320 different similarity-based selection techniques and then compare the effectiveness of the best similarity-based selection technique with other common selection techniques in the literature. The results based on two industrial case studies, in the domain of embedded systems, show significant benefits and a large improvement in performance when using a similarity-based approach. We complement these analyses with further studies on the scalability of the technique and the effects of failure rate on its effectiveness. We also propose a method to identify optimal tradeoffs between the number of test cases to run and fault detection.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-based diversity-driven learn-to-rank test case prioritization;Expert Systems with Applications;2024-12

2. Gate Branch Coverage: A Metric for Quantum Software Testing;Proceedings of the 1st ACM International Workshop on Quantum Software Engineering: The Next Evolution;2024-07-16

3. DeepGD: A Multi-Objective Black-Box Test Selection Approach for Deep Neural Networks;ACM Transactions on Software Engineering and Methodology;2024-06-27

4. Evaluating String Distance Metrics for Reducing Automatically Generated Test Suites;Proceedings of the 5th ACM/IEEE International Conference on Automation of Software Test (AST 2024);2024-04-15

5. Curiosity-Driven Testing for Sequential Decision-Making Process;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3