A simple abstraction for complex concurrent indexes

Author:

da Rocha Pinto Pedro1,Dinsdale-Young Thomas1,Dodds Mike2,Gardner Philippa1,Wheelhouse Mark1

Affiliation:

1. Imperial College London, London, United Kingdom

2. University of Cambridge, Cambridge, United Kingdom

Abstract

Indexes are ubiquitous. Examples include associative arrays, dictionaries, maps and hashes used in applications such as databases, file systems and dynamic languages. Abstractly, a sequential index can be viewed as a partial function from keys to values. Values can be queried by their keys, and the index can be mutated by adding or removing mappings. Whilst appealingly simple, this abstract specification is insufficient for reasoning about indexes accessed concurrently. We present an abstract specification for concurrent indexes. We verify several representative concurrent client applications using our specification, demonstrating that clients can reason abstractly without having to consider specific underlying implementations. Our specification would, however, mean nothing if it were not satisfied by standard implementations of concurrent indexes. We verify that our specification is satisfied by algorithms based on linked lists, hash tables and B-Link trees. The complexity of these algorithms, in particular the B-Link tree algorithm, can be completely hidden from the client's view by our abstract specification.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abstract Specifications for Concurrent Maps;Programming Languages and Systems;2017

2. Balancing expressiveness in formal approaches to concurrency;Formal Aspects of Computing;2015-05

3. Fault-Tolerant Resource Reasoning;Programming Languages and Systems;2015

4. TaDA: A Logic for Time and Data Abstraction;ECOOP 2014 – Object-Oriented Programming;2014

5. Joins: A Case Study in Modular Specification of a Concurrent Reentrant Higher-Order Library;ECOOP 2013 – Object-Oriented Programming;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3