Affiliation:
1. University of Texas at Austin, Austin, TX, USA
Abstract
Mechanized proof assistants are powerful verification tools, but proof development can be difficult and time-consuming. When verifying a family of related programs, the effort can be reduced by proof reuse. In this paper, we show how to engineer product lines with theorems and proofs built from feature modules. Each module contains proof fragments which are composed together to build a complete proof of correctness for each product. We consider a product line of programming languages, where each variant includes metatheory proofs verifying the correctness of its semantic definitions. This approach has been realized in the Coq proof assistant, with the proofs of each feature independently certifiable by Coq. These proofs are composed for each language variant, with Coq mechanically verifying that the composite proofs are correct. As validation, we formalize a core calculus for Java in Coq which can be extended with any combination of casts, interfaces, or generics.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Reference30 articles.
1. Frame-Based Software Engineering
2. Modularizing theorems for software product lines: The jbook case study;Batory D.;Journal of Universal Computer Science,2008
3. Feature interactions, products, and composition
4. Scaling step-wise refinement
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献