Affiliation:
1. Google Research, New York, NY, United States
2. The University of Hong Kong, Pokfulam, Hong Kong
3. Columbia University, New York, NY, United States
Abstract
Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1-1/e . Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013), which restricts beating a 1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting.
The main ingredient in our online matching algorithm is a novel subroutine called
online correlated selection
(OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献