Edge-Weighted Online Bipartite Matching

Author:

Fahrbach Matthew1ORCID,Huang Zhiyi2ORCID,Tao Runzhou3ORCID,Zadimoghaddam Morteza1ORCID

Affiliation:

1. Google Research, New York, NY, United States

2. The University of Hong Kong, Pokfulam, Hong Kong

3. Columbia University, New York, NY, United States

Abstract

Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) gave an elegant algorithm for unweighted bipartite matching that achieves an optimal competitive ratio of 1-1/e . Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this article, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013), which restricts beating a  1/2 competitive ratio for the more general monotone submodular welfare maximization problem, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in an online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection  (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.

Funder

NSF

RGC

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Reference48 articles.

1. Edge Weighted Online Windowed Matching

2. Guy Blanc and Moses Charikar. 2021. Multiway online correlated selection. In Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science. IEEE, 1277–1284.

3. Attenuate Locally, Win Globally: Attenuation-Based Frameworks for Online Stochastic Matching with Timeouts

4. Online submodular maximization: beating 1/2 made simple

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3