A pipeline-based heterogeneous framework for efficient synthetic light field rendering

Author:

Kao Chih-Chen1,Tseng Liang-Chi1,Hsu Wei-Chung1

Affiliation:

1. National Taiwan University

Abstract

The research interest of real-time global illumination has increased due to the growing demand of graphics applications such as virtual reality. Recently, the design that combines Image-Based Rendering (IBR) and Ray-Tracing to create Synthetic Light Field (SLF) has been widely adopted to provide delicate visual experience for multiple viewpoints at an acceptable frame rate. However, despite its parallel characteristic, constructing a SLF is still inefficient on modern Graphics Processing Unit (GPU) due to the irregularities. For instance, the issues caused by branch divergence, early-termination and irregular memory access prolong the execution time that cannot be simply resolved by workload merging. In this paper, we proposed a Runtime framework that reorganizes the execution into a pipeline-based pattern with grouping of primary rays. The workloads are later distributed to all heterogeneous cores to increase the efficiency of the execution. With this approach, the number of valid rays can be maintained at a high level with less divergence of paths. Based on the experiment on a heterogeneous system, the maximum throughput for a single GPU becomes 3.12 times higher than the original on average and becomes even higher on systems with multiple heterogeneous cores.

Publisher

Association for Computing Machinery (ACM)

Reference34 articles.

1. E. H. Adelson J. R. Bergen etal The plenoptic function and the elements of early vision. 1991. E. H. Adelson J. R. Bergen et al. The plenoptic function and the elements of early vision. 1991.

2. AMD and GPUOpen. Radeon-rays. AMD and GPUOpen. Radeon-rays.

3. Combining Single and Packet-Ray Tracing for Arbitrary Ray Distributions on the Intel MIC Architecture

4. Adaptive ray packet reordering

5. A quantitative study of irregular programs on GPUs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3