Dual-path Convolutional Image-Text Embeddings with Instance Loss

Author:

Zheng Zhedong1,Zheng Liang2,Garrett Michael3,Yang Yi1ORCID,Xu Mingliang4,Shen Yi-Dong5

Affiliation:

1. University of Technology Sydney, Ultimo NSW, Australia

2. The Australian National University, Australia

3. CingleVue International Australia and Edith Cowan University, Joondalup WA, Australia

4. Zhengzhou University, Zhengzhou, Henan, China

5. State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract

Matching images and sentences demands a fine understanding of both modalities. In this article, we propose a new system to discriminatively embed the image and text to a shared visual-textual space. In this field, most existing works apply the ranking loss to pull the positive image/text pairs close and push the negative pairs apart from each other. However, directly deploying the ranking loss on heterogeneous features (i.e., text and image features) is less effective, because it is hard to find appropriate triplets at the beginning. So the naive way of using the ranking loss may compromise the network from learning inter-modal relationship. To address this problem, we propose the instance loss, which explicitly considers the intra-modal data distribution. It is based on an unsupervised assumption that each image/text group can be viewed as a class. So the network can learn the fine granularity from every image/text group. The experiment shows that the instance loss offers better weight initialization for the ranking loss, so that more discriminative embeddings can be learned. Besides, existing works usually apply the off-the-shelf features, i.e., word2vec and fixed visual feature. So in a minor contribution, this article constructs an end-to-end dual-path convolutional network to learn the image and text representations. End-to-end learning allows the system to directly learn from the data and fully utilize the supervision. On two generic retrieval datasets (Flickr30k and MSCOCO), experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods. Moreover, in language-based person retrieval, we improve the state of the art by a large margin. The code has been made publicly available.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 287 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3