Spatial Ensemble Learning for Heterogeneous Geographic Data with Class Ambiguity

Author:

Jiang Zhe1ORCID,Sainju Arpan Man1,Li Yan2,Shekhar Shashi2,Knight Joseph3

Affiliation:

1. Department of Computer Science, University of Alabama, Tuscaloosa, AL

2. Department of Computer Science, University of Minnesota, Minneapolis, MN

3. Department of Forest Resources, University of Minnesota, North St. Paul, MN

Abstract

Class ambiguity refers to the phenomenon whereby similar features correspond to different classes at different locations. Given heterogeneous geographic data with class ambiguity, the spatial ensemble learning (SEL) problem aims to find a decomposition of the geographic area into disjoint zones such that class ambiguity is minimized and a local classifier can be learned in each zone. The problem is important for applications such as land cover mapping from heterogeneous earth observation data with spectral confusion. However, the problem is challenging due to its high computational cost. Related work in ensemble learning either assumes an identical sample distribution (e.g., bagging, boosting, random forest) or decomposes multi-modular input data in the feature vector space (e.g., mixture of experts, multimodal ensemble) and thus cannot effectively minimize class ambiguity. In contrast, we propose a spatial ensemble framework that explicitly partitions input data in geographic space. Our approach first preprocesses data into homogeneous spatial patches and uses a greedy heuristic to allocate pairs of patches with high class ambiguity into different zones. We further extend our spatial ensemble learning framework with spatial dependency between nearby zones based on the spatial autocorrelation effect. Both theoretical analysis and experimental evaluations on two real world wetland mapping datasets show the feasibility of the proposed approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive weight ensemble approach to forecast influenza activity in the context of irregular seasonality;2024-03-28

2. Deep Learning for Spatiotemporal Big Data: Opportunities and Challenges [Vision Paper];2023 IEEE International Conference on Big Data (BigData);2023-12-15

3. Harnessing heterogeneity in space with statistically guided meta-learning;Knowledge and Information Systems;2023-03-08

4. Spatial Data Science;Machine Learning for Data Science Handbook;2023

5. INN: An Interpretable Neural Network for AI Incubation in Manufacturing;ACM Transactions on Intelligent Systems and Technology;2022-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3