EchoSensor: Fine-grained Ultrasonic Sensing for Smart Home Intrusion Detection

Author:

Lian Jie1ORCID,Du Changlai1ORCID,Lou Jiadong2ORCID,Chen Li1ORCID,Yuan Xu2ORCID

Affiliation:

1. University of Louisiana at Lafayette, USA

2. University of Delaware, USA

Abstract

This article presents the design and implementation of a novel intrusion detection system, called EchoSensor, which leverages speakers and microphones in smart home devices to capture human gait patterns for individual identification. EchoSensor harnesses the speaker to send inaudible acoustic signals (around 20 kHz) and utilizes the microphone to capture the reflected signals. As the reflected signals have unique variations in the Doppler shift respective to the gaits of different people, EchoSensor is able to profile human gait patterns from the generated spectrograms. To mine the gait information, we first propose a two-stage interference cancellation scheme to remove the background noise and environmental interference, followed by a new method to detect the starting point of walking and estimate the gait cycle time. We then perform the fine-grained analysis of the spectrograms to extract a series of features. In the end, machine learning is employed to construct an identifier for individual recognition. We implement the EchoSensor system and deploy it under different household environments to conduct intrusion detection tasks. Extensive experimental results have demonstrated that EchoSensor can achieve the averaged Intruder Gait Detection Rate (IDR) and True Family Member Gait Detection Rate (TFR) of 92.7% and 91.9%, respectively.

Funder

NSF

BoRSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference51 articles.

1. Acoustic gaits: Gait analysis with footstep sounds;Altaf M. Umair Bin;IEEE Transactions on Biomedical Engineering,2015

2. On Using Gait in Forensic Biometrics

3. LIBSVM

4. BreathPrint

5. Gilles Degottex. 2010. Glottal Source and Vocal-tract Separation. Ph.D. Dissertation.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3