Secure serverless computing using dynamic information flow control

Author:

Alpernas Kalev1,Flanagan Cormac2,Fouladi Sadjad3,Ryzhyk Leonid4,Sagiv Mooly5,Schmitz Thomas2,Winstein Keith3

Affiliation:

1. Tel Aviv University, Israel / VMware, USA

2. University of California at Santa Cruz, USA

3. Stanford University, USA

4. VMware, USA

5. Tel Aviv University, Israel

Abstract

The rise of serverless computing provides an opportunity to rethink cloud security. We present an approach for securing serverless systems using a novel form of dynamic information flow control (IFC). We show that in serverless applications, the termination channel found in most existing IFC systems can be arbitrarily amplified via multiple concurrent requests, necessitating a stronger termination-sensitive non-interference guarantee, which we achieve using a combination of static labeling of serverless processes and dynamic faceted labeling of persistent data. We describe our implementation of this approach on top of JavaScript for AWS Lambda and OpenWhisk serverless platforms, and present three realistic case studies showing that it can enforce important IFC security properties with modest overhead.

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference71 articles.

1. Airbnb. 2017. StreamAlert: A serverless framework for real-time data analysis and alerting. http://airbnb.io/projects/ streamalert/ . Airbnb. 2017. StreamAlert: A serverless framework for real-time data analysis and alerting. http://airbnb.io/projects/ streamalert/ .

2. Kalev Alpernas Cormac Flanagan Sadjad Fouladi Leonid Ryzhyk Mooly Sagiv Thomas Schmitz and Keith Winstein. 2017. Trapeze source code repository. https://github.com/kalevalp/trapeze . Kalev Alpernas Cormac Flanagan Sadjad Fouladi Leonid Ryzhyk Mooly Sagiv Thomas Schmitz and Keith Winstein. 2017. Trapeze source code repository. https://github.com/kalevalp/trapeze .

3. Amazon. 2017a. AWS Lambda. https://aws.amazon.com/lambda/ . Amazon. 2017a. AWS Lambda. https://aws.amazon.com/lambda/ .

4. Amazon. 2017b. AWS Rekognition. https://aws.amazon.com/rekognition/ . Amazon. 2017b. AWS Rekognition. https://aws.amazon.com/rekognition/ .

5. Apache Software Foundation. 2017. OpenWhisk. https://openwhisk.apache.org/ . Apache Software Foundation. 2017. OpenWhisk. https://openwhisk.apache.org/ .

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3