NNest

Author:

Ke Liu1,He Xin1,Zhang Xuan1

Affiliation:

1. Washington University in St. Louis

Publisher

ACM

Reference24 articles.

1. A. Krizhevsky etal 2012. ImageNet classification with deep convolutional neural networks. NIPS (2012) 1097--1105. A. Krizhevsky et al. 2012. ImageNet classification with deep convolutional neural networks. NIPS (2012) 1097--1105.

2. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators

3. C. Zhang etal 2015. Optimizing FPGA-based accelerator design for deep convolutional neural networks. FPGA (2015) 161--170. 10.1145/2684746.2689060 C. Zhang et al. 2015. Optimizing FPGA-based accelerator design for deep convolutional neural networks. FPGA (2015) 161--170. 10.1145/2684746.2689060

4. Caffeine

5. Eric Chung etal 2017. Accelerating Persistent Neural Networks at Datacenter Scale. In Hotchip. Eric Chung et al. 2017. Accelerating Persistent Neural Networks at Datacenter Scale. In Hotchip.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A design space exploration framework for deployment of resource-constrained deep neural networks;Real-Time Image Processing and Deep Learning 2024;2024-06-07

2. TileFlow: A Framework for Modeling Fusion Dataflow via Tree-based Analysis;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

3. An Evaluation and Architecture Exploration Engine for CNN Accelerators through Extensive Dataflow Analysis;2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC);2023-10-16

4. Optimization of AI SoC with Compiler-assisted Virtual Design Platform;Proceedings of the 2023 International Symposium on Physical Design;2023-03-26

5. Explainable-DSE: An Agile and Explainable Exploration of Efficient HW/SW Codesigns of Deep Learning Accelerators Using Bottleneck Analysis;Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 4;2023-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3