Automated Model-Based Optimization of Data-Adaptable Embedded Systems

Author:

Lizarraga Adrian1,Sprinkle Jonathan1,Lysecky Roman1ORCID

Affiliation:

1. University of Arizona, Tucson, AZ

Abstract

Dynamic data-driven applications such as object tracking, surveillance, and other sensing and decision applications are largely dependent on the characteristics of the data streams on which they operate. The underlying models and algorithms of data-driven applications must continually adapt at runtime to changes in data quality and availability to meet both functional and designer-specified performance requirements. Given the dynamic nature of these applications, point solutions produced by traditional design tools cannot be expected to perform adequately across varying execution scenarios. Additionally, the increasing diversity and interdependence of application requirements complicates the design and optimization process. To assist designers of data-driven applications, we present a modeling and optimization framework that enables developers to model an application's data sources, tasks, and exchanged data tokens; specify application requirements through high-level design metrics and fuzzy logic--based optimization rules; and define an estimation framework to automatically optimize the application at runtime. We demonstrate the modeling and optimization process via an example application for video-based vehicle tracking and collision avoidance. We analyze the benefits of runtime optimization by comparing the performance of static point solutions to dynamic solutions over five distinct execution scenarios, showing improvements of up to 74% for dynamic over static configurations. Further, we show the benefits of using fuzzy logic--based rules over traditional weighted functions for the specification and evaluation of competing high-level metrics in optimization.

Funder

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3