Feedback driven instruction-set extension

Author:

Kastens Uwe1,Le Dinh Khoi1,Slowik Adrian1,Thies Michael1

Affiliation:

1. University of Paderborn

Abstract

Application specific instruction-set processors combine an efficient general purpose core with special purpose functionality that is tailored to a particular application domain. Since the extension of an instruction set and its utilization are non-trivial tasks, sophisticated tools have to provide guidance and support during design. Feedback driven optimization allows for the highest level of specialization, but calls for a simulator that is aware of the newly proposed instructions, a compiler that makes use of these instructions without manual intervention, and an application program that is representative for the targeted application domain.In this paper we introduce an approach for the extension of instruction sets that is built around a concise yet powerful processor abstraction. The specification of a processor is well suited to automatically generate the important parts of a compiler backend and cycle-accurate simulator. A typical design cycle involves the execution of the representative application program, evaluation of performance statistics collected by the simulator, refinement of the processor specification guided by performance statistics, and update of the compiler and simulator according to the refined specification. We demonstrate the usefulness of our novel approach by example of an instruction set for symmetric ciphers.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power Internet Assets Security Threat Assessment based on the Cost of Security Protection;2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE);2022-04

2. Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models;Electronic Proceedings in Theoretical Computer Science;2010-02-06

3. Resource Efficiency of Instruction Set Extensions for Elliptic Curve Cryptography;Fifth International Conference on Information Technology: New Generations (itng 2008);2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3