Towards Fair Federated Recommendation Learning: Characterizing the Inter-Dependence of System and Data Heterogeneity

Author:

Maeng Kiwan1,Lu Haiyu2,Melis Luca2,Nguyen John2,Rabbat Mike2,Wu Carole-Jean2

Affiliation:

1. Meta, United States and CSE, Pennsylvania State University, United States

2. Meta, United States

Publisher

ACM

Reference80 articles.

1. Durmus Alp Emre Acar , Yue Zhao , Ramon Matas Navarro , Matthew Mattina , Paul  N. Whatmough , and Venkatesh Saligrama . 2021 . Federated Learning Based on Dynamic Regularization. In 9th International Conference on Learning Representations, ICLR 2021 , Virtual Event, Austria , May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=B7v4QMR6Z9w Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N. Whatmough, and Venkatesh Saligrama. 2021. Federated Learning Based on Dynamic Regularization. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=B7v4QMR6Z9w

2. Bilge Acun , Matthew Murphy , Xiaodong Wang , Jade Nie , Carole-Jean Wu , and Kim Hazelwood . 2021 . Understanding Training Efficiency of Deep Learning Recommendation Models at Scale . In Proceedings of the IEEE International Symposium on High Performance Computer Architecture. Bilge Acun, Matthew Murphy, Xiaodong Wang, Jade Nie, Carole-Jean Wu, and Kim Hazelwood. 2021. Understanding Training Efficiency of Deep Learning Recommendation Models at Scale. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture.

3. Alexis Stephens. 2014. Big Data Has Potential to Both Hurt and Help Disadvantaged Communities. https://nextcity.org/urbanist-news/big-data-good-bad-help-disadvantaged-communities. Alexis Stephens. 2014. Big Data Has Potential to Both Hurt and Help Disadvantaged Communities. https://nextcity.org/urbanist-news/big-data-good-bad-help-disadvantaged-communities.

4. Dan Alistarh , Demjan Grubic , Jerry Li , Ryota Tomioka , and Milan Vojnovic . 2017 . QSGD: Communication-efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing Systems 30 (2017). Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017. QSGD: Communication-efficient SGD via gradient quantization and encoding. Advances in Neural Information Processing Systems 30 (2017).

5. Daniel  J Beutel , Taner Topal , Akhil Mathur , Xinchi Qiu , Titouan Parcollet , Pedro  PB de Gusmão , and Nicholas  D Lane . 2020 . Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390(2020). Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, Pedro PB de Gusmão, and Nicholas D Lane. 2020. Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390(2020).

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Horizontal Federated Recommender System: A Survey;ACM Computing Surveys;2024-05-08

2. Towards fair and personalized federated recommendation;Pattern Recognition;2024-05

3. Challenges and Advancement in Federated Recommendation System: A Comprehensive Review;Springer Proceedings in Mathematics & Statistics;2024

4. Recent advances and future challenges in federated recommender systems;International Journal of Data Science and Analytics;2023-08-25

5. Fairness-aware Differentially Private Collaborative Filtering;Companion Proceedings of the ACM Web Conference 2023;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3