Compiling Recurrences over Dense and Sparse Arrays

Author:

Sundram Shiv1ORCID,Tariq Muhammad Usman1ORCID,Kjolstad Fredrik1ORCID

Affiliation:

1. Stanford University, Stanford, USA

Abstract

We present a framework for compiling recurrence equations into native code. In our framework, users specify a system of recurrences, the types of data structures that store inputs and outputs, and scheduling commands for optimization. Our compiler then lowers these specifications into native code that respects the dependencies in the recurrence equations. Our compiler can generate code over both sparse and dense data structures, and determines if the recurrence system is solvable with the provided scheduling primitives. We evaluate the performance and correctness of the generated code on several recurrences, from domains as diverse as dense and sparse matrix solvers, dynamic programming, graph problems, and sparse tensor algebra. We demonstrate that the generated code has competitive performance to hand-optimized implementations in libraries. However, these handwritten libraries target specific recurrences, specific data structures, and specific optimizations. Our system, on the other hand, automatically generates implementations from recurrences, data formats, and schedules, giving our system more generality than library approaches.

Funder

SRC

NSF

Publisher

Association for Computing Machinery (ACM)

Reference41 articles.

1. Richard E Bellman. 2010. Dynamic programming. Princeton university press.

2. Aart J.C. Bik Bixia Zheng Fredrik Kjolstad Nicolas Vasilache Penporn Koanantakool and Tatiana Shpeisman. 2022. Compiler Support for Sparse Tensor Computations in MLIR. ACM Transactions on Architecture and Code Optimization.

3. Boost. 2002. The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley Longman Publishing Co., Inc., USA. isbn:0201729148

4. Gaurav Chaurasia, Jonathan Ragan-Kelley, Sylvain Paris, George Drettakis, and Fredo Durand. 2015. Compiling high performance recursive filters. In Proceedings of the 7th conference on high-performance graphics. 85–94.

5. Kazem Cheshmi, Shoaib Kamil, Michelle Mills Strout, and Maryam Mehri Dehnavi. 2017. Sympiler: transforming sparse matrix codes by decoupling symbolic analysis. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 1–13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3