Direct posterior confidence for out-of-vocabulary spoken term detection

Author:

Wang Dong1,King Simon2,Frankel Joe2,Vipperla Ravichander3,Evans Nicholas3,Troncy Raphaël3

Affiliation:

1. Nuance Communications, Aachen, Germany

2. University of Edinburgh, Edinburgh, UK

3. EURECOM, France

Abstract

Spoken term detection (STD) is a key technology for spoken information retrieval. As compared to the conventional speech transcription and keyword spotting, STD is an open-vocabulary task and has to address out-of-vocabulary (OOV) terms. Approaches based on subword units, for example phones, are widely used to solve the OOV issue; however, performance on OOV terms is still substantially inferior to that of in-vocabulary (INV) terms. The performance degradation on OOV terms can be attributed to a multitude of factors. One particular factor we address in this article is the unreliable confidence estimation caused by weak acoustic and language modeling due to the absence of OOV terms in the training corpora. We propose a direct posterior confidence derived from a discriminative model, such as multilayer perceptron (MLP). The new confidence considers a wide-range acoustic context which is usually important for speech recognition and retrieval; moreover, it localizes on detected speech segments and therefore avoids the impact of long-span word context which is usually unreliable for OOV term detection. In this article, we first develop an extensive discussion about the modeling weakness problem associated with OOV terms, and then propose our approach to address this problem based on direct poster confidence. Our experiments carried out on spontaneous and conversational multiparty meeting speech, demonstrate that the proposed technique provides a significant improvement in STD performance as compared to conventional lattice-based confidence, in particular for OOV terms. Furthermore, the new confidence estimation approach is fused with other advanced techniques for OOV treatment, such as stochastic pronunciation modeling and discriminative confidence normalization. This leads to an integrated solution for OOV term detection that results in a large performance improvement.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3