LeaD: Learn to Decode Vibration-based Communication for Intelligent Internet of Things

Author:

Zhao Guangrong1,Du Bowen2,Shen Yiran3,Lao Zhenyu4,Cui Lizhen5,Wen Hongkai2

Affiliation:

1. School of Software, Shandong University & College of Computer Science and Technology, Harbin Engineering University

2. Department of Computer Science, University of Warwick

3. School of Software & C-FAIR, Shandong University

4. College of Computer Science and Technology, Harbin Engineering University

5. School of Software and C-FAIR, Shandong University

Abstract

In this article, we propose, LeaD , a new vibration-based communication protocol to Lea rn the unique patterns of vibration to D ecode the short messages transmitted to smart IoT devices. Unlike the existing vibration-based communication protocols that decode the short messages symbol-wise, either in binary or multi-ary, the message recipient in LeaD receives vibration signals corresponding to bits-groups. Each group consists of multiple symbols sent in a burst and the receiver decodes the group of symbols as a whole via machine learning-based approach. The fundamental behind LeaD is different combinations of symbols (1 s or 0 s) in a group will produce unique and reproducible patterns of vibration. Therefore, decoding in vibration-based communication can be modeled as a pattern classification problem. We design and implement a number of different machine learning models as the core engine of the decoding algorithm of LeaD to learn and recognize the vibration patterns. Through the intensive evaluations on large amount of datasets collected, the Convolutional Neural Network (CNN)-based model achieves the highest accuracy of decoding (i.e., lowest error rate), which is up to 97% at relatively high bits rate of 40 bits/s. While its competing vibration-based communication protocols can only achieve transmission rate of 10 bits/s and 20 bits/s with similar decoding accuracy. Furthermore, we evaluate its performance under different challenging practical settings and the results show that LeaD with CNN engine is robust to poses, distances (within valid range), and types of devices, therefore, a CNN model can be generally trained beforehand and widely applicable for different IoT devices under different circumstances. Finally, we implement LeaD on both off-the-shelf smartphone and smart watch to measure the detailed resources consumption on smart devices. The computation time and energy consumption of its different components show that LeaD is lightweight and can run in situ on low-cost smart IoT devices, e.g., smartwatches, without accumulated delay and introduces only marginal system overhead.

Funder

National Natural Science Foundation of China

National Key R&D Program

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference51 articles.

1. A survey on near field communication (NFC) technology;Coskun Vedat;Wirel. Person. Commun.,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3