Two-level processor-sharing scheduling disciplines

Author:

Aalto Samuli1,Ayesta Urtzi2,Nyberg-Oksanen Eeva1

Affiliation:

1. Helsinki University of Technology

2. France Telecom R&D

Abstract

Inspired by several recent papers that focus on scheduling disciplines for network flows, we present a mean delay analysis of Multilevel Processor Sharing (MLPS) scheduling disciplines in the context of M/G/1 queues. Such disciplines have been proposed to model the effect of the differentiation between short and long TCP flows in the Internet. Under MLPS, jobs are classified into classes depending on their attained service. We consider scheduling disciplines where jobs within the same class are served either with Processor Sharing (PS) or Foreground Background (FB) policy, and the class that contains jobs with the smallest attained service is served first. It is known that the FB policy minimizes (maximizes) the mean delay when the hazard rate of the job size distribution is decreasing (increasing). Our analysis, based on pathwise and meanwise arguments of the unfinished truncated work, shows that Two-Level Processor Sharing (TLPS) disciplines, e.g., FB+PS and PS+PS, are better than PS scheduling when the hazard rate of the job size distribution is decreasing. If the hazard rate is increasing and bounded, we show that PS outperforms PS+PS and FB+PS. We further extend our analysis to study local optimality within a level of an MLPS scheduling discipline.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequency scaling in multilevel queues;ACM SIGMETRICS Performance Evaluation Review;2021-03-05

2. Size-based scheduling for TCP flows: Implementation and performance evaluation;Computer Networks;2020-12

3. Frequency scaling in multilevel queues;Performance Evaluation;2020-11

4. Simple Near-Optimal Scheduling for the M/G/1;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2020-05-27

5. A Queueing Model that Works Only on the Biggest Jobs;Computer Performance Engineering;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3