Data streaming algorithms for efficient and accurate estimation of flow size distribution

Author:

Kumar Abhishek1,Sung Minho1,Xu Jun (Jim)1,Wang Jia2

Affiliation:

1. Georgia Institute of Technology

2. AT&T Labs -- Research

Abstract

Knowing the distribution of the sizes of traffic flows passing through a network link helps a network operator to characterize network resource usage, infer traffic demands, detect traffic anomalies, and accommodate new traffic demands through better traffic engineering. Previous work on estimating the flow size distribution has been focused on making inferences from sampled network traffic. Its accuracy is limited by the (typically) low sampling rate required to make the sampling operation affordable. In this paper we present a novel data streaming algorithm to provide much more accurate estimates of flow distribution, using a "lossy data structure" which consists of an array of counters fitted well into SRAM. For each incoming packet, our algorithm only needs to increment one underlying counter, making the algorithm fast enough even for 40 Gbps (OC-768) links. The data structure is lossy in the sense that sizes of multiple flows may collide into the same counter. Our algorithm uses Bayesian statistical methods such as Expectation Maximization to infer the most likely flow size distribution that results in the observed counter values after collision. Evaluations of this algorithm on large Internet traces obtained from several sources (including a tier-1 ISP) demonstrate that it has very high measurement accuracy (within 2%). Our algorithm not only dramatically improves the accuracy of flow distribution measurement, but also contributes to the field of data streaming by formalizing an existing methodology and applying it to the context of estimating the flow-distribution.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Server-Assisted Traffic Measurement for Programmable Data Center Networks;IEEE Transactions on Network Science and Engineering;2024-09

2. Learning-Based Sketch for Adaptive and High-Performance Network Measurement;IEEE/ACM Transactions on Networking;2024-06

3. BitMatcher: Bit-level Counter Adjustment for Sketches;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Scalable Overspeed Item Detection in Streams;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Hierarchical Sketch: An Efficient Solution for Threshold-t Flows Measurement in High-Speed Networks;2023 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3