Restricting grammars with tree automata

Author:

Adams Michael D.1,Might Matthew1

Affiliation:

1. University of Utah, USA

Abstract

Precedence and associativity declarations in systems like yacc resolve ambiguities in context-free grammars (CFGs) by specifying restrictions on allowed parses. However, they are special purpose and do not handle the grammatical restrictions that language designers need in order to resolve ambiguities like dangling else, the interactions between binary operators and functional if expressions in ML, and the interactions between object allocation and function calls in JavaScript. Often, language designers resort to restructuring their grammars in order to encode these restrictions, but this obfuscates the designer's intent and can make grammars more difficult to read, write, and maintain. In this paper, we show how tree automata can modularly and concisely encode such restrictions. We do this by reinterpreting CFGs as tree automata and then intersecting them with tree automata encoding the desired restrictions. The results are then reinterpreted back into CFGs that encode the specified restrictions. This process can be used as a preprocessing step before other CFG manipulations and is well behaved. It performs well in practice and never introduces ambiguities or LR( k ) conflicts.

Funder

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference11 articles.

1. Safe Specification of Operator Precedence Rules

2. Yakyak: parsing with logical side constraints. In Grzegorz Rozenberg and Wolfgang Thomas, editors, Developments in Language Theory, Foundations, Applications, and Perspectives, Aachen;Klarlund Nils;Germany,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectacular: Finding Laws from 25 Trillion Terms;2023 IEEE Conference on Software Testing, Verification and Validation (ICST);2023-04

2. Improving IDE code inspections with tree automata;Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering;2022-11-07

3. Searching entangled program spaces;Proceedings of the ACM on Programming Languages;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3