SnowFlock

Author:

Lagar-Cavilla H. Andrés1,Whitney Joseph A.2,Bryant Roy2,Patchin Philip2,Brudno Michael2,de Lara Eyal2,Rumble Stephen M.3,Satyanarayanan M.4,Scannell Adin5

Affiliation:

1. AT&T Labs Inc. -- Research

2. University of Toronto

3. Stanford University

4. Carnegie Mellon University

5. GridCentric Inc.

Abstract

A basic building block of cloud computing is virtualization. Virtual machines (VMs) encapsulate a user’s computing environment and efficiently isolate it from that of other users. VMs, however, are large entities, and no clear APIs exist yet to provide users with programatic, fine-grained control on short time scales. We present SnowFlock, a paradigm and system for cloud computing that introduces VM cloning as a first-class cloud abstraction. VM cloning exploits the well-understood and effective semantics of UNIX fork. We demonstrate multiple usage models of VM cloning: users can incorporate the primitive in their code, can wrap around existing toolchains via scripting, can encapsulate the API within a parallel programming framework, or can use it to load-balance and self-scale clustered servers. VM cloning needs to be efficient to be usable. It must efficiently transmit VM state in order to avoid cloud I/O bottlenecks. We demonstrate how the semantics of cloning aid us in realizing its efficiency: state is propagated in parallel to multiple VM clones, and is transmitted during runtime, allowing for optimizations that substantially reduce the I/O load. We show detailed microbenchmark results highlighting the efficiency of our optimizations, and macrobenchmark numbers demonstrating the effectiveness of the different usage models of SnowFlock.

Funder

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Division of Computer and Network Systems

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference88 articles.

1. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs

2. Minerva

3. Amazon.com. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/. Amazon.com. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

4. ANL. Argonne National Laboratory MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/. ANL. Argonne National Laboratory MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/.

5. Apache A. The Apache Software Foundation -- Hadoop. http://hadoop.apache.org/core/. Apache A. The Apache Software Foundation -- Hadoop. http://hadoop.apache.org/core/.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CURE—Towards enforcing a reliable timeline for cloud forensics: Model, architecture, and experiments;Computer Communications;2016-10

2. A Reference Model for Virtual Machine Launching Overhead;IEEE Transactions on Cloud Computing;2016-07-01

3. Efficient image deployment in cloud environments;Journal of Network and Computer Applications;2016-03

4. Mega Data Center for Elastic Internet Applications;2014 IEEE International Parallel & Distributed Processing Symposium Workshops;2014-05

5. TSMC: A Novel Approach for Live Virtual Machine Migration;Journal of Applied Mathematics;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3