Transitioning Spiking Neural Network Simulators to Heterogeneous Hardware

Author:

Nguyen Quang Anh Pham1,Andelfinger Philipp1,Tan Wen Jun1ORCID,Cai Wentong2,Knoll Alois3

Affiliation:

1. TUM Create Ltd. and Nanyang Technological University, Singapore

2. Nanyang Technological University, Singapore

3. Techn. Universität München, Germany and Nanyang Technological University, Singapore

Abstract

Spiking neural networks (SNN) are among the most computationally intensive types of simulation models, with node counts on the order of up to 10 11 . Currently, there is intensive research into hardware platforms suitable to support large-scale SNN simulations, whereas several of the most widely used simulators still rely purely on the execution on CPUs. Enabling the execution of these established simulators on heterogeneous hardware allows new studies to exploit the many-core hardware prevalent in modern supercomputing environments, while still being able to reproduce and compare with results from a vast body of existing literature. In this article, we propose a transition approach for CPU-based SNN simulators to enable the execution on heterogeneous hardware (e.g., CPUs, GPUs, and FPGAs), with only limited modifications to an existing simulator code base and without changes to model code. Our approach relies on manual porting of a small number of core simulator functionalities as found in common SNN simulators, whereas the unmodified model code is analyzed and transformed automatically. We apply our approach to the well-known simulator NEST and make a version executable on heterogeneous hardware available to the community. Our measurements show that at full utilization, a single GPU achieves the performance of about 9 CPU cores. A CPU-GPU co-execution with load balancing is also demonstrated, which shows better performance compared to CPU-only or GPU-only execution. Finally, an analytical performance model is proposed to heuristically determine the optimal parameters to execute the heterogeneous NEST.

Funder

Campus for Research Excellence and Technological Enterprise

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3