An approach to the optimum design of computer graphics systems

Author:

Foley James D.1

Affiliation:

1. Univ. of North Carolina at Chapel Hill

Abstract

Display system designers are faced with the difficult task of selecting major subsystems in an intelligent way. Each subsystem is chosen from large numbers of alternatives; the selection is based on considerations such as system response time, system cost, and the distribution of data storage and processing between the graphics processor and its supporting data processing system. The work reported here develops an objective, quantitative design procedure and helps give a better understanding of how to configure display systems. This is accomplished by means of a mathematical model of a computer driven graphics system. The parameters of the model are functions of the capabilities of the graphics hardware and of the computational requirements of the graphics application. The model can be analyzed using numerical queueing analysis or simulation to obtain an average response time prediction. By combining the model with an optimization, the best graphics system configuration, subject to a cost constraint, is found for several applications. The optimum configurations are in turn used to find general display system design guidelines.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference18 articles.

1. An introduction to computer graphic terminals;Lewin M.H;Prop. IEEE55,1967

2. Computer-aided design of electronic circuits a user's viewpoint

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eliminating Distance in Scientific Computing: an Experiment in Televisualization;The International Journal of Supercomputing Applications;1990-12

2. A Case Study of Human Factors Guidelines in Computer Graphics;IEEE Computer Graphics and Applications;1983-11

3. Human factors guidelines in computer graphics: a case study;International Journal of Man-Machine Studies;1983-02

4. Quantitative Analysis of Vector Graphics System Performance;ACM Transactions on Graphics;1983-01

5. System Design Considerations for Graphics Input Devices;Computer;1978-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3